A 56-day feeding trial was conducted to investigate the effects of the combination of maggot and termite meal with Coppens commercial feed on the growth performance, food utilization and survival of the African catfish (C. gariepinus). A total of 150 fingerlings were stocked in fifteen glass aquaria, 10 each in triplicate. Fish in aquarium A₁, A₂ and A₃ were fed maggot meal (100 % – MM), B₁, B₂ and B₃ with termite meal (100 % - TM), C₁, C₂ and C₃ with equal combination of maggot meal and Coppens feed (50:50), D₁, D₂, and D₃ with equal combination of termite meal and Coppens feed (50:50) and E₁, E₂ and E₃ with Coppens feed (100 %). Growth performance including length gain, weight gain, growth rate, specific growth rate and mean growth rate and food utilization indices including food consumed (g), food conversion ratio and food conversion ratio showed significant variation (P<0.05) in fish fed Coppens feed compared to other treatments. Physico-chemical parameters and ammonia (mg/l) were within the acceptable range for optimal growth of freshwater fishes. Although Coppens was the best result for growth and food utilization, the combination of maggot/termite meal with Coppens as supplementary feed will reduce the cost of fish production exposing farmers to a higher profit margin. In conclusion, feeding fish with only termite meal or maggot meal can lead to poor growth because these insect meals do not provide all the nutrients required for optimal growth in fish. However, maggot meal and termite meal should be used as only as a supplementary food in fish culture or as a replacement for highly priced fishmeal in fish feed formulation because they are rich in protein.

Keywords: Clarias gariepinus, Supplementary feed, Maggot meal, Termite meal, Coppens feed, Growth performance, Food utilization.
sometimes, their supply is inconsistent especially for farmers who locate their farms in rural areas (Eyo et al., 2014). Therefore, farmers are searching for supplementary feed that can be combined with these imported feed or that can completely replace these imported feed with compromising with fish growth and health. Recent high demand and consequent high prices for conventional feed ingredients such as fishmeal, soybean meal, groundnut meal etc., has led to the development of insect protein for aquaculture as a new area of research (FAO, 2013).

Insect meals are nutritious and healthy alternatives to fishmeal because of its rich nutritional values especially protein, fat and minerals. Termite (Macrotermes subhyalinus) are winged insect that emerge from holes near termite nests after the first rainfall at the end of the dry season (Sogbesan and Ugwumba, 2008; FAO, 2013). In Africa, heavy rain can be stimulated through local beat near termite nests after the first rain (Eyo et al., 2014). The dominance of this species in Nigeria is attributed to its fast growth rate, disease resistance, ability to tolerate harsh environmental conditions, high fecundity, high stocking densities under culture conditions, ease of artificial breeding, acceptability of formulated feed, high market value, good taste, high meat quality and consumer’s preference compared to other species (Eyo et al., 2014).

Several studies have been reported on the use of insect protein as alternative protein sources in fish and livestock feed to partially or completely replace conventional feedstuff such as fish meal and soybean meal. Fishmeal was replaced by maggot meal in the diets Oreochromis niloticus (Fashina-Bombata and Balogun, 1997; Ajani et al., 2004). Ogbe et al., (2005) and Michael and Sogbesan (2015) assessed if earthworms and maggots cultivated in agricultural and industrial waste products of origin are source of protein for Tilapia and Clarias. Studies on the harvesting techniques of maggot and evaluation of maggot meal as dietary animal protein source for Catfish have been documented (Sogbesan et al., 2005; Sogbesan, et al., 2006; Sogbesan, et al., 2006). However, none of these studies have presented findings on the effects of the combination of these insect meals with foreign and imported feed such as Coppens. Therefore, this study aims to investigate the effects of the combination of maggot and termite meal with Coppens commercial feed on the growth performance, food utilization and survival of the African catfish (C. gariepinus).

MATERIALS AND METHODS

Study area

This study was conducted out at the Institute of Oceanography Fish Farm Hatchery complex, University of Calabar, Cross River State, Nigeria. This farm has a total surface area of three hectares (3Ha) and is located within latitude of 04°55.9’N and longitude of 08°26’E. This farm occupies the peninsula between the Great Kwa River and Calabar River with elevation of 41 meters above sea level (Eyo et al., 2014).

Experimental design

This research was conducted in triplicate for 56 days using 15 aquaria measuring 1.0m x 0.5m x 0.5m, in the hatchery complex of the Institute of Oceanography, University of Calabar. The aquaria were labeled A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3, E1, E2 and E3. A total of 150 fingerlings of C. gariepinus (10 fingerling in each aquarium) were stocked in the 15 aquaria filled with dechlorinated water from the hatchery borehole. The fingerlings were acclimatized for seven days prior to the start of the experiment. During acclimation, the fish were fed to satiation twice daily. At the end of the seven days acclimatization period, the fish were starved for 24 hours to empty their guts, thus increase their appetite for the new diet. Thereafter, the initial wet body weight (bulk) of the fish in each aquarium was measured to the nearest gram using a METTLE MT-5000D electronic balance (Eyo and Ekanem, 2011). Also, the initial total length of the fingerlings was measured to the nearest 0.1 cm using measuring board (Eyo et al., 2013). Fish in aquarium A1, A2 and A3 were fed feed 1 (100 % maggot meal), fish in
aquarium B_1, B_2 and B_3 were fed feed 2 (100 % termite meal), fish in aquarium C_1, C_2 and C_3 were fed feed 3 (equal combination of maggot meal and Coppens feed - 50:50), fish in aquarium D_1, D_2, and D_3 were fed feed 4 (equal combination of termite meal and Coppens feed - 50:50), while fish in aquarium E_1, E_2 and E_3 were fed feed 5 (100 % Coppens feed). The fishes were fed twice daily (08.00-09.00h and 17.00-18.00h) at 5% of their body weight. The morphometric measurements (bulk wet body weight in grams and individual total length in cm) were repeated after every two weeks for eight weeks (Ekanem et al., 2012).

Maggot production and Preparation of Maggot Meal (MM)

Maggot were produced from poultry droppings by placing them in plastic sacs and soaked with water and the sacs were kept outside in a shade as a substrate for maggot development. The sacs were exposed for house flies to lay egg. The sacs were watered twice daily morning and evening to maintain the constant moisture required for maggot development (Nuov et al., 1995). Maggots were noticed to appear on the second day with a peak on the fourth and fifth day. The maggots were harvested from the sac by washing and sieved through a metal screen of 3mm mesh size. The maggots harvested were weighed, blanched in hot water, thereafter oven dried at 70 °C for 24 h before crushing into powder to obtain maggot meal. The maggot meal was packed in an air tight container and stored in a refrigerator at 8°C (Sogbesan and Ugwumba, 2008).

Collection of Termites and Preparation of Termite Meal (TM)

Termites (M. subhyalinus) were collected during swarm activities from a termitarium in the University of Calabar. The collected termites were weighed fresh and oven-dried at 80°C for 3 hours according to Sogbesan and Ugwumba (2008). Thereafter, the wings were blown off and dried termites were milled and re-weighed to ascertain the amount of termite meal prepared. The termite meal was packed in an air tight container and stored in a refrigerator at 8°C (Sogbesan and Ugwumba, 2008).

Growth Performance indices

Growth performance indices of fish fed the experimental diets including wet weight gain, length increment, growth rate, specific growth rate, mean growth rate and survival (%) were calculated according to standard formulas (De Silva and Anderson, 1995; Eyo and Ekanem (2011) as shown below:

1. Wet weight gain: Final weight (W_2) – initial weight (W_1)
2. Length increment: Final length (L_2) – initial length (L_1)
3. Growth rate: (Final weight, W_2 – initial weight, W_1) / (Number of days)
4. Specific growth rate: SGR (% per day) = [(Loge W_2 - Loge W_1) / T_2 – T_1]*100
 Where W_1 = Initial weight (g)
 W_2 = Final weight (g)
 T_1 = Initial day
 T_2 = Final day
5. Mean Growth Rate (MGR) was calculated as the average weight gain in million gram per day.
 $MGR = [(W_2 – W_1) / 0.5 (W_2 + W_1)t] \times 1000$
 Where W_2 = final weight (g)
 W_1 = initial weight (g)
 t = experimental period in days
6. Survival Rate (%): Survival rate (%) was calculated as total fish number harvested and divided by total fish number stocked, expressed in percentage as follows:
 Survival (%) = Total fish number harvested X 100
 Total fish number stocked

Food Utilization Indices

Food utilization indices of fish fed the experimental diets including include food consumed (g), food conversion ratio (FCR) and feed conversion efficiency (FCE) were calculated according to standard formulas (De Silva and Anderson, 1995; Eyo and Ekanem (2011) as shown below:

- Food Consumed (g): This is given as % of fish bulk body weight X No. of days (Eyo and Ekanem, 2011)
- Food Conversion Ratio: This is given as: Feeding consumed (g)/ Weight gain (g) (De Silva and Anderson, 1995).
- Food Conversion Efficiency This is given as: [Weight gain (g) / Feed consumed (g)]* 100 (De Silva and Anderson, 1995).
- Protein Intake: This is given as Protein (%) in feed x total weight (g) of diet consumed / 100.
- Protein Efficiency Ratio: This is given as wet weight gain by fish (g) / protein intake (g).

Proximate Composition of Experimental Diets

Maggot meal, Termite meal and Coppens feed were analyzed for proximate indices including crude protein, lipid, crude fiber, ash, moisture and carbohydrate contents in the Biochemistry Department of the University of Calabar, Nigeria, following standard procedures provided by AOAC (2000). Moisture was determined
using the oven drying method, crude protein content was determined using the micro-Kjeldahl method, lipid content was determined by the Soxhlet extraction method, ash content was determined by incinerating at 550 °C and carbohydrate was calculated by difference.

Monitoring of Physico-chemical parameters

Physico-chemical parameters measured include pH, dissolved oxygen (mg/l), temperature (°C) and ammonia (mg/l). The common calibrated mercury in glass thermometer was used for measuring water temperature while the pH and dissolved oxygen concentration were measured using the Jenway meters (models 3050, England for DO and model 9070 for the pH). Ammonia was be measured colorimetrically using ammonia test kit (David et al., 2010).

Statistical analysis

Growth performance and food utilization indices including weight gain, length gain, growth rate (g/day), mean growth rate, specific growth rate, food consumed, food conversion ratio (FCR), food conversion efficiency (FCE) and survival (%) were subjected to one way analysis of variance (ANOVA) to test for significance using Predictive Analytical Software window (PASW), version 18.0. Effects with a probability of (P< 0.05) were considered significant. Least Significance differences (LSD) was used to determine the level of significance among the various treatments.

RESULTS

Growth Performance Indices of C. gariepinus fed the Experimental Diets

Results of the growth performance of *C. gariepinus* fed the five experimental diets showed that length gain (cm) was significantly highest in fish fed Coppens feed (23.53 ± 0.29 cm), followed by fish fed Maggot Meal + Coppens feed (19.73 ± 0.18 cm), followed by fish fed Termite Meal + Coppens feed (17.80 ± 0.30 cm), followed by fish fed Maggot Meal (15.77 ± 0.20 cm) and least in fish fed Termite Meal (14.73 ± 0.22 cm). Weight gain (g) was also significantly highest in fish fed Coppens feed (195.87 ± 4.19 g), followed by fish fed Maggot Meal + Coppens feed (171.57 ± 2.87 g), followed by fish fed Termite Meal + Coppens feed (162.80 ± 195 g), followed by fish fed Maggot Meal (115.03 ± 1.07 g) and least in fish fed Termite Meal (107.57 ± 1.55 g). Growth rate was also significantly highest in fish fed Coppens feed (3.50 ± 0.08 g/day), followed by fish fed Maggot Meal + Coppens feed (3.06 ± 0.05 g/day), followed by fish fed Termite Meal + Coppens feed (2.91 ± 0.03 g/day), followed by fish fed Maggot Meal (2.06 ± 0.02 g/day) and least in fish fed Termite Meal (1.92 ± 0.03 g/day). Specific growth rate (SGR) was also followed the same trend with highest value in fish fed Coppens feed (3.91 ± 0.03 %/day), followed by fish fed Maggot Meal + Coppens feed (3.67 ± 0.02 %/day), followed by fish fed Termite Meal + Coppens feed (3.59 ± 0.02 %/day), followed by fish fed Maggot Meal (3.07 ± 0.02 %/day) and least in fish fed Termite Meal (2.96 ± 0.02 %/day).

Mean growth rate (MGR) was also followed the same trend with highest value in fish fed Coppens feed (28.53 ± 0.10 mg/day), followed by fish fed Maggot Meal + Coppens feed (27.58 ± 0.08 mg/day), followed by fish fed Termite Meal + Coppens feed (27.63 ± 0.11 mg/day), followed by fish fed Maggot Meal (24.87 ± 0.10 mg/day) and least in fish fed Termite Meal (24.28 ± 0.08 mg/day). Percentage survival (%) was highest value in fish fed Coppens feed, Termite Meal + Coppens feed and Termite Meal (100.00 ± 0.00), followed by fish fed Maggot Meal 96.67 ± 3.33 (96.67 ± 3.33 %) and least in fish fed Termite Meal (93.33 ± 3.33 %).

<p>| Table 1. Proximate Composition of Maggot Meal (MM), Termite Meal (TM) and Coppens Feed |
|--------------------------------|----------------------------------|-----------------|---------|----------|</p>
<table>
<thead>
<tr>
<th>Proximate Indices</th>
<th>Maggot Meal (MM)</th>
<th>Termite Meal (TM)</th>
<th>Coppens Feed</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>16.53 ± 0.01a</td>
<td>10.78 ± 0.02b</td>
<td>8.15 ± 0.03c</td>
<td>0.00000015</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>4.50 ± 0.01 a</td>
<td>7.60 ± 0.33 b</td>
<td>9.32 ± 0.03 c</td>
<td>0.00000069</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>33.29 ± 0.01 a</td>
<td>20.94 ± 0.08 b</td>
<td>42.24 ± 0.05 c</td>
<td>0.00000015</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>37.78 ± 0.01 a</td>
<td>34.23 ± 0.83 b</td>
<td>11.35 ± 0.08 c</td>
<td>0.00000062</td>
</tr>
<tr>
<td>Fibre (%)</td>
<td>3.14 ± 0.01 a</td>
<td>5.71 ± 0.01 b</td>
<td>3.47 ± 0.10 c</td>
<td>0.00000044</td>
</tr>
<tr>
<td>Carbohydrate (%)</td>
<td>4.70 ± 0.02 a</td>
<td>20.74 ± 0.00 b</td>
<td>25.47 ± 0.16 c</td>
<td>0.00000028</td>
</tr>
</tbody>
</table>

* Each value represents the mean of three determination and means with different superscript are significantly different (P<0.05)
Table 2. Growth Performance Indices of *C. gariepinus* fed the Experimental Diets

<table>
<thead>
<tr>
<th>Growth Indices</th>
<th>Maggot Meal (MM)</th>
<th>Termite Meal (TM)</th>
<th>Maggot Meal + Coppens</th>
<th>Termite Meal + Coppens</th>
<th>Coppens Feed</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Length (cm)</td>
<td>7.47 ± 0.03</td>
<td>7.33 ± 0.09</td>
<td>7.40 ± 0.06</td>
<td>7.43 ± 0.09</td>
<td>7.40 ± 0.06</td>
<td>-</td>
</tr>
<tr>
<td>Final Length (cm)</td>
<td>23.23 ± 0.23</td>
<td>22.07 ± 0.26</td>
<td>27.13 ± 0.20</td>
<td>25.23 ± 0.45</td>
<td>30.93 ± 0.24</td>
<td>-</td>
</tr>
<tr>
<td>Length Gain (cm)</td>
<td>15.77 ± 0.20a</td>
<td>14.73 ± 0.22b</td>
<td>19.73 ± 0.18c</td>
<td>17.80 ± 0.30d</td>
<td>23.53 ± 0.29e</td>
<td>0.0000000043</td>
</tr>
<tr>
<td>Initial Weight (g)</td>
<td>25.07 ± 0.15</td>
<td>25.33 ± 0.56</td>
<td>25.26 ± 0.16</td>
<td>25.23 ± 0.23</td>
<td>24.63 ± 0.20</td>
<td>-</td>
</tr>
<tr>
<td>Final Weight (g)</td>
<td>140.10 ± 1.00</td>
<td>132.90 ± 2.06</td>
<td>196.83 ± 3.00</td>
<td>188.03 ± 1.92</td>
<td>220.50 ± 4.33</td>
<td>-</td>
</tr>
<tr>
<td>Weight Gain (g)</td>
<td>115.03 ± 1.07a</td>
<td>107.57 ± 1.55a</td>
<td>171.57 ± 2.87b</td>
<td>162.80 ± 1.95c</td>
<td>195.87 ± 4.19d</td>
<td>0.0000000114</td>
</tr>
<tr>
<td>Growth Rate (g/day)</td>
<td>2.06 ± 0.02a</td>
<td>1.92 ± 0.03a</td>
<td>3.06 ± 0.05b</td>
<td>2.91 ± 0.03c</td>
<td>3.50 ± 0.08d</td>
<td>0.0000000012</td>
</tr>
<tr>
<td>SGR (%/day)</td>
<td>3.07 ± 0.02a</td>
<td>2.96 ± 0.02b</td>
<td>3.67 ± 0.02c</td>
<td>3.59 ± 0.02d</td>
<td>3.91 ± 0.03e</td>
<td>0.0000000066</td>
</tr>
<tr>
<td>MGR (mg/day)</td>
<td>24.87 ± 0.10a</td>
<td>24.28 ± 0.08b</td>
<td>27.58 ± 0.08c</td>
<td>27.63 ± 0.11c</td>
<td>28.53 ± 0.10d</td>
<td>0.0000000072</td>
</tr>
<tr>
<td>% Survival</td>
<td>96.67 ± 3.33a</td>
<td>100.00 ± 0.00a</td>
<td>93.33 ± 3.33a</td>
<td>100.00 ± 0.00a</td>
<td>100.00 ± 0.00a</td>
<td>0.171</td>
</tr>
</tbody>
</table>

Each value represents the mean of triplicate experimental units and means with different superscript are significantly different (P<0.05)

Table 3. Food Utilization Indices of *C. gariepinus* fed the Experimental Diets

<table>
<thead>
<tr>
<th>Food Utilization Indices</th>
<th>Maggot Meal (MM)</th>
<th>Meal</th>
<th>Termite Meal (TM)</th>
<th>Maggot Meal + Coppens</th>
<th>Termite Meal + Coppens</th>
<th>Coppens Feed</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Consumed (g)</td>
<td>171.70 ± 1.96a</td>
<td>164.59 ± 1.49b</td>
<td>225.91 ± 2.27c</td>
<td>211.03 ± 3.01d</td>
<td>237.23 ± 2.82e</td>
<td>0.000000023</td>
<td></td>
</tr>
<tr>
<td>Food Conversion Ratio</td>
<td>1.49 ± 0.17a</td>
<td>1.53 ± 0.01b</td>
<td>1.32 ± 0.01c</td>
<td>1.30 ± 0.01c</td>
<td>1.21 ± 0.01d</td>
<td>0.000000018</td>
<td></td>
</tr>
<tr>
<td>Food Conversion Efficiency</td>
<td>67.21 ± 0.73a</td>
<td>65.35 ± 0.46b</td>
<td>75.93 ± 0.53c</td>
<td>77.16 ± 0.70c</td>
<td>82.54 ± 0.80d</td>
<td>0.000000021</td>
<td></td>
</tr>
<tr>
<td>Protein Intake (g)</td>
<td>56.49 ± 0.65a</td>
<td>32.92 ± 0.30b</td>
<td>85.85 ± 0.86c</td>
<td>65.42 ± 0.93d</td>
<td>99.64 ± 1.15e</td>
<td>0.000000073</td>
<td></td>
</tr>
<tr>
<td>Protein Efficiency Ratio</td>
<td>2.04 ± 0.02a</td>
<td>3.27 ± 0.02b</td>
<td>2.00 ± 0.02c</td>
<td>2.49 ± 0.02c</td>
<td>1.96 ± 0.02d</td>
<td>0.000000025</td>
<td></td>
</tr>
</tbody>
</table>

* Each value represents the mean of triplicate experimental units and means with different superscript are significantly different (P<0.05)
Table 4. Physico-chemical Parameters of the Experimental Aquaria

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Maggot Meal (MM)</th>
<th>Termite Meal (TM)</th>
<th>Termite Meal + Coppens</th>
<th>Maggot Meal + Coppens</th>
<th>Coppens Feed</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.9 ± 0.06a</td>
<td>6.9 ± 0.03a</td>
<td>7.0 ± 0.10a</td>
<td>6.9 ± 0.02a</td>
<td>7.0 ± 0.05a</td>
<td>0.925</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>28.5 ± 0.05a</td>
<td>0.982</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>4.7 ± 0.2a</td>
<td>4.8 ± 0.1a</td>
<td>4.9 ± 0.2a</td>
<td>4.7 ± 0.3a</td>
<td>4.8 ± 0.1a</td>
<td>0.626</td>
</tr>
<tr>
<td>Ammonia (mg/l)</td>
<td>0.02 ± 0.01a</td>
<td>0.01 ± 0.02a</td>
<td>0.02 ± 0.02a</td>
<td>0.03 ± 0.01a</td>
<td>0.01 ± 0.01a</td>
<td>0.974</td>
</tr>
</tbody>
</table>

* Each value represents the mean of triplicate experimental units and means with different superscript are significantly different (P<0.05)

Food Utilization Indices of C. gariepinus fed the Experimental Diets

Feed utilization indices of *C. gariepinus* fed the five experimental diets (Table 3) showed that feed consumed (g) was highest in fish fed Coppens feed (237.23 ± 2.82 g), followed by fish fed Maggot Meal + Coppens feed (225.91 ± 2.27 g), followed by fish fed Termite Meal + Coppens feed (211.03 ± 3.01 g), followed by fish fed Maggot Meal (171.70 ± 1.96 g) and least in fish fed Termite Meal (164.59 ± 1.49). Feed conversion ratio (FCR) was highest in fish fed Termite meal (1.93 ± 0.01), followed by fish fed Maggot Meal (1.49 ± 0.17), followed by fish fed Maggot Meal + Coppens feed (1.32 ± 0.01 g), followed by fish fed Termite Meal (1.30 ± 0.01) and least in fish fed Coppens (1.21 ± 0.01). Feed conversion efficiency (FCE) was highest in fish fed Coppens feed (82.54 ± 0.80 %), followed by fish fed Maggot Meal + Coppens feed (75.93 ± 0.53%), followed by fish fed Termite Meal + Coppens feed (77.16 ± 0.70 %), followed by fish fed Maggot Meal (67.21 ± 0.73 %) and least in fish fed Termite Meal (65.35 ± 0.46 %). Protein intake (g) was highest in fish fed Coppens feed (99.64 ± 1.15 g), followed by fish fed Maggot Meal + Coppens feed (85.85 ± 0.86 g), followed by fish fed Termite Meal + Coppens feed (65.42 ± 0.93 g), followed by fish fed Maggot Meal (56.49 ± 0.65 g) and least in fish fed Termite Meal (32.92 ± 0.30 g). Protein efficiency ratio was highest in fish fed Termite Meal (3.27 ± 0.02), followed by fish fed Termite Meal + Coppens feed (2.49 ± 0.02 g), followed by fish fed Maggot Meal (2.04 ± 0.02), followed by fish fed Maggot Meal + Coppens feed (56.49 ± 0.65 g) and least in fish fed Coppens feed (1.96 ± 0.02).

Physico-chemical Parameters of the Experimental Aquaria

Results of Physico-chemical parameters showed that in aquaria fed Maggot meal, mean pH was 6.9 ± 0.06, mean water temperature (28.5 ± 0.05°C), mean dissolved oxygen (4.7 ± 0.2 mg/l) and mean ammonia (0.02 ± 0.01 mg/l). in aquaria fed Termite meal, mean pH was 6.9 ± 0.03, mean water temperature (28.5 ± 0.05°C), mean dissolved oxygen (4.8 ± 0.1 mg/l) and mean ammonia (0.001 ± 0.02 mg/l). in aquaria fed Maggot meal + Coppens feed, mean pH was 7.0 ± 0.10, mean water temperature (28.5 ± 0.05°C), mean dissolved oxygen (4.9 ± 0.2 mg/l) and mean ammonia (0.002 ± 0.02 mg/l). in aquaria fed Termite meal + Coppens feed, mean pH was 6.9 ± 0.02, mean water temperature (28.5 ± 0.05°C), mean dissolved oxygen (4.7 ± 0.3 mg/l) and mean ammonia (0.003 ± 0.01 mg/l). in aquaria fed Coppens feed, mean pH was 7.0 ± 0.05, mean water temperature (28.5 ± 0.05°C), mean dissolved oxygen (4.8 ± 0.1 mg/l) and mean ammonia (0.001 ± 0.01 mg/l).

DISCUSSION

Growth performance indices evaluated in this study showed that weight gain was significantly highest (P<0.05) in fish fed Coppens feed, followed by fish fed a combination of maggot meal and Coppens feed, followed by fish fed a combination of termite meal and Coppens feed, followed by fish fed maggot meal and least in fish fed termite meal. Results obtained for growth performance indices of fish in this study such as weight gain, length gain, growth rate, specific growth rate and mean growth rate showed that there was a significant influence (P<0.05) of experimental diets on the experimental fish with fish fed only Coppens feed recording the best performance. The difference obtained in the growth performance of fish fed only termite and maggot meal when compared to Coppens feed and the combination of Coppens feed with termite and maggot meal may be attributed to the fact that termite and maggot meal are only rich in proximate composition but are very poor in mineral or elemental composition (Barker et al., 1998; Sogbesan and Ugwumba, 2008). Proximate analysis of maggot meal (MM) and termite meal (TM)
revealed that these two insects are rich in protein, moisture, carbohydrate, fat, lipid and fibre, required by fish for optimal growth under culture condition. In this study, Termite meal had crude protein of 20.94 ± 0.08 %.

This result is lower than 37 % reported by Aduku (1993) for Macrotermes spp. 44.12 % reported by Oyarzum et al. (1996) for Nasutitermes spp. 48.80 % reported by Fadiyimu et al. (2003) for Macrotermes spp. and 43.5 % reported by Sogbesan and Ugwumba (2008) for Macrotermes subhyalinus. Moreover, maggot meal had crude protein of 33.29 ± 0.01 % which is higher 22.97 % reported by Omoyinmi and Olaoye (2012) and lower than 42.00 ± 1.40 % reported by Atse et al. (2014) for Musca domestica. These variations observed in the proximate composition of maggot and termite meal in this study with other studies may be attributed to the methods used in processing of these insect meals. Response to feed was more aggressive in Coppens than other feed during the feeding experiment and this is similar to findings of Ekanem et al. (2012). This may be attributed to the fact that Coppens feed is very palatable with a more fishy odour attracting fish during feeding (Ekanem et al., 2012). Comparatively, the growth performance of fish fed maggot meal and Coppens feed reported in this study fall within the ranges reported by Sogbesan (2006) for Heterobranchus longifilis, Sogbesan et al. (2006) for Heteroclarus, Madu and Ufodike (2003) for Clarias anguillaris and Fagbembo et al. (1992) for Heterobranchus bidorsalis, when fly maggots were used in combination with other feed types in feeding their experimental fishes. The mean crude protein level in maggot meal (33.29 ± 0.01 %) agrees with 30 – 45 % recommended by Omoyinmi and Fafioye (2005) for the African catfish (C. gariepinus) whereas 20.94 ± 0.08 % obtained for termite meal is below recommended levels. The growth performance of a fish species or any organism has been reported to hinged on the biological index value of protein source (Sogbesan, 2006; Lovell, 1994). Fly maggots are known for their positive high biological index value of 3.33 (Hoffman et al., 2004). Again, fibre content of feed has been documented to enhance growth performance in fish especially when the Biological Index Value (BIV) is in the same range as the fibre content (Lovell, 1994; Steffen, 1989; Hoffman et al., 2004). In this study the fibre content in the fly maggot (3.14%) was in the same value range of 3.33 of the fly maggot Biological index value, and this gave the reason for the observed growth performance of Clarias gariepinus fingerlings fed maggot meal and Coppens feed. Additionally, the combination was highly acceptable by the fish. A result similar to those of Faturoti (1991), and Sogbesan (2006) when respectively working on the fish nutrition on feeding in freshwater catfishes, and performance of Heterobranchus longifilis fingerlings fed maggot meal-based diets in miniflow through systems. From the result of the study, the use of maggot meal and termite meal in combination with Coppens feed to raise C. gariepinus appear to be advantageous especially as it produced higher growth indices when compared to the use of only maggot meal and termite meal in feeding. In fish nutrition studies, amount of feed consumed, food conversion ratios (FCRs) and food conversion efficiency are very useful indices that are used to evaluate feed acceptability, production economics and fish performance in terms of growth. In this study, feed consumed and food conversion efficiency was highest in fish fed Coppens feed (237.23 ± 2.82 g and 82.54 ± 0.80 %) and least in fish fed only termite meal (164.59 ± 1.49 g and 65.35 ± 0.46 %). These results explain the trend obtained in the growth performance indices of C. gariepinus fed the five experimental diets. This indicates that food utilization is a function of fish growth. In the present study, the best food conversion ratio was obtained in fish fed Coppens feed (1.21 ± 0.01) while fish fed only termite meal gave the highest FCR value 1.53 ± 0.01. However, FCR and FCE values obtained for fish fed all the experimental diets were within the range reported by several authors to be optimal for better growth performance in fishes (Ndome et al., 2011; Eyo and Ekanem, 2011; Ekanem et al., 2012; Ekanem et al., 2013; and Eyo et al., 2014). This clearly indicates that all the invertebrates (termite and maggot) used in this study as supplementary feed could be consumed and utilized efficiently by fish in the absence of commercial fish feed. This fact confirms the suitability of termite and maggot meal as supplementary diets for C. gariepinus. Percentage survival was not influenced by experimental feed as fish fed Coppens feed, Termite Meal + Coppens feed and Termite Meal showed highest survival of 100.00 ± 0.00 %, followed by fish fed Maggot Meal (96.67 ± 3.33 %) and least in fish fed Termite Meal (93.33 ± 3.33 %). This observation supports findings of several other authors such as Eyo and Ekanem (2011), Ekanem et al., 2012 and Eyo et al., 2014. Results of physico-chemical parameters (pH, DO and temperature) obtained in this study for all the experimental units were within the range recommended for optimal growth of freshwater fishes (Boyd, 1990). Also, the absence of negative effect of the fish growth and physico-chemical parameters are also factors that place the combination of maggot and termite meal with Commercial Pellet feed as a suitable feed combination to be used in culturing C. gariepinus.

SUMMARY AND CONCLUSION
Findings of this study has shown that food utilization indices and growth performance was significantly better (P<0.05) in fish fed Coppens feed, followed by fish fed...
the combination of Coppens feed and maggot meal, followed by fish fed Coppens feed and termite meal, followed by fish fed only maggot meal and least in fish fed only termite meal. Although Coppens feed gave the best result in terms of growth and food utilization, its availability especially in rural areas where fish farming is practiced is inconsistent. Moreover, the use of only termite meal or maggot meal for the culture of *C. gariepinus* is not advocated because these insect meals is only rich in proximate indices but very poor in minerals which are also required by *C. gariepinus* for optimal growth. It is recommended that maggot and termite meal could therefore be used a whole or partial replacement for fishmeal in fish feed formulation.

REFERENCES

Aduku AO. (1993). Tropical feedstuff analysis table. Department of Animal science, Faculty of Agriculture, Ahmadu Bello University, Zaria, Nigeria.

Michael KG, Sogbesan OA (2015) Evaluation of Maggot Meal (Muscomadestoma) and Single Cell Protein (Mushroom) in the Diet of Clarias gariepinus Fingerlings (Burchell, 1822). Fish Aquac J 6:133. doi:10.4172/2150-5243.1000133

Accepted November 12, 2015

Citation: Arong GA, Eyo VO (2015). Evaluation of house fly (Musca domestica) maggot meal and termite (Macrotermes subhyalinus) meal as supplementary feed for African catfish Clarias gariepinus (Burchell, 1822).

Copyright: © 2015 Arong and Eyo. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.