Effectiveness of triaxial geogrid reinforcement for the improvement of CBR strength of natural lateritic gravel soil for rigid pavements

Sumanta Das¹ and MR Choudhury²

¹,²Department of Civil Engineering, SRPEC (Gujarat Technological University), Unjha, Gujarat, India.

Geosynthetic reinforcement of pavement layers is increasing due to its ease of installation and effectiveness in strength increase. In this study, we made an attempt to effectively increase the CBRCalifornia bearing ratio) strength by using the Triaxial Geogrid Reinforcement for rigid pavements. Laterictic gravel soil was selected and tested without reinforcement. Therefore, by placing a layer of a certain geogrid above the third layer within the sample height, the effects of geogrid reinforcement on California bearing ratio values are obtained. This was undertaken for two strengths of geogrid in both soaked and unsoaked conditions. The results show that California bearing ratio values increases with increasing geogrid strength for soaked and unsoaked conditions. The California bearing ratio increased by 15% and 39% in the soaked condition when the Tx160 and Tx170 geogrids were interfaced in the sample respectively. Also the CBR increased by 29% and 45% in the unsoaked condition when the Tx160 and Tx170 geogrids were also interfaced respectively. The variation of the reinforcement ratio for both geogrids was consistently more than one in soaked and unsoaked conditions. The use of geogrid reinforcement in road pavements layers can reduce cost.

Keywords: CBR value, geosynthetics, lateritic gravel soil, rigid pavements, soil stability, triaxial geogrid reinforcement.

INTRODUCTION

Pavement improvement is a general term used for the modification of soil to enhance the strength and other engineering properties. There are many methods of pavement improvement such as using additives (like cement, lime et cetera) and compaction (both static and dynamic). Geogrids represent a rapidly growing segment within geosynthetics. Rather than being woven, non-woven or knitted textile fabric, geogrids are plastics formed into a very open grid like configuration. Geogrids are formed in three ways: 1) stretched in one or two directions for improved physical properties, 2) made on weaving or knitted machinery by standard and well established methods and then coated, or 3) made by bending rods or straps together. Geogrids mostly function exclusively as reinforcement material (R. M. Koerner, 2005).

In order to determine the exact effect of geosynthetics on road pavements the placement of the geotextiles within the layers is vital, therefore the need to know how to achieve maximum California Bearing Ratio (CBR) with geotextile positioning and strength. Also, the strength of geosynthetic material to achieve given strength increase is always desirable.

*Corresponding author: Sumanta Das, Department of Civil Engineering, Marwadi Education Foundations’ Group of Institutions, Rajkot-360003, Gujarat, India, E-mail: sumanvu_27@yahoo.co.in
The aim of this research was to study the effect of placement of a geogrid material in a selected lateritic soil, on the strength of the soil i.e, to determine the effect of strength of geogrid on the California Bearing Ratio of a lateritic soil material under soaked and unsoaked conditions, and to study the variation of geogrid reinforced material with penetration under static loading.

Literature Review

Geosynthetic is defined as a planar product manufactured from a polymeric material that is used with soil, rock, or other geotechnical-related material as an integral part of a civil engineering project, structure, or system. Most of the geosynthetics are made from synthetic polymers of polypropylene, polyester, or polyethylene. Geotextile is a permeable geosynthetic made of textile materials. Geotextile type is determined by the method used to combine the filaments or tapes into the planar structure (A. C. Lopes, 2008). (R. M. Koerner, 2005) states that the first use of fabrics in reinforcing roads was attempted by the South Carolina Highway Department in 1926. A heavy cotton fabric was placed on a primed earth base, hot asphalt was applied to the fabric, and a thin layer of sand was put on the asphalt. The department published the results of this work in 1935, describing eight separate field experiments until the fabric deteriorated, the results showed that the roads were in good condition and that the fabric reduced cracking, raveling and localized road failures. This project was certainly the forerunner of the separation and reinforcement functions of geosynthetic materials as we know them today. There are specific types of geosynthetics: geotextiles, geogrids, geonets, geomembranes, geosynthetic-clay liners, geofoams and geocomposites (R. M. Koerner, 2005).

Geogrids consist of heavy strands of plastic materials arranged as longitudinal and transverse elements to outline a uniformly distributed and relatively large grid-like array of apertures in the resulting sheet. These apertures allow direct contact between soil particles on either side of the sheet (D. T. Bergado and H. M. Abuel-Naga, 2005). Geogrids are characterized by integrally connected elements within-plane apertures (openings) uniformly distributed between the elements. The apertures allow the soil to fill the space between the elements, thereby increasing soil interaction with the geogrid and ensuring unrestricted vertical drainage. Their applications are not only in highway, but also in railroad track construction and rehabilitation (A. Olawale, 2011).

Geogrids have been used successfully in pavement layer studies; (Motanelli, F., Zhao, A. and Rimoldi, P., 1997) placed geogrid between gravel base course and sand subgrade and showed the increase in CBR value of the subgrade material. Gosavi et al, (G. Gosavi, K. A. Patil, and S. Saran, 2004) also investigated the strength behavior of soils reinforced with mixed geogrid woven fabric and showed that the soaked CBR without the geogrid was about 4.9% and after application of the geogrid test results showed an improvement in the CBR value. Naeini and Moayed, (Naeini, S. A. and Moayed, R., 2009) indicated that using a geogrid at top of the layer 3 in a soil sample with different plasticity index causes a considerable increase in the CBR value compared with unreinforced soil in both soaked and unsoaked conditions. In order to quantify the amount of increase in the penetration resistance, the reinforcement ratio is taken into consideration. The reinforcement ratio according to (R. M. Koerner, 2005) is defined as (Equation 1).

\[
\text{Reinforcement Ratio} = \frac{\text{Load with Geotextile}}{\text{Load without Geotextile}}
\]

Product Specifications for a typical Triaxial Geogrid

By examining all the design characteristics of a geogrid, through testing and research, certain factors were identified to affect its performance. These are the profile of the rib section, rib thickness, junction efficiency, aperture size and stiffness. Rigorous testing has been conducted in line with the rib directions of the geogrid. In each direction tested, the junction strength was found to be essentially equal to rib strength giving a junction efficiency of 100%. Biaxial geogrids have tensile stiffness predominantly in two directions. Triaxial (TriAx) geogrids on the other hand have three principal directions of stiffness, which are further enhanced by their rigid triangular geometry. This produces a significantly different structure than any other geogrid and provides high stiffness through 360 degrees. A truly multi-directional product with near isotropic properties (Tensar Geosynthetics in Civil Engineering, 2014).

In a mechanically stabilized layer, aggregate particles interlock within the geogrid and are confined within the apertures, creating an enhanced composite material with improved performance characteristics. The structural properties of the mechanically stabilized layer are influenced by the magnitude and depth of the confined zones. The shape and thickness of the geogrid ribs and the overall structure of TriAx have a direct influence on the degree of confinement and efficiency of the stabilized layer. TriAx geogrids have greater rib depth compared with conventional biaxial geogrids. Trafficking tests and analytical modelling have been undertaken by Tensar International to compare performance advantages between the two forms of geogrid with various rib depths in a mechanically stabilized layer. The results were conclusive in confirming that an improved structural performance was achieved with the TriAx geogrid with its deeper rib depth and unique profile. Numerical modelling techniques confirm the importance of geogrid rib thickness on aggregate confinement and load dissipation (Tensar Geosynthetics in Civil Engineering, 2014).
Table 1. Properties of Soil Sample

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Natural Gravel Sample</th>
<th>MRTH Specifications requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base material</td>
</tr>
<tr>
<td>Color</td>
<td>Brown</td>
<td>Max 30 %</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>37%</td>
<td>Max 30 %</td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>25.6%</td>
<td>Max 30 %</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>18.2%</td>
<td>Max 30 %</td>
</tr>
<tr>
<td>Plasticity Modulus</td>
<td></td>
<td>Max 400</td>
</tr>
<tr>
<td>Optimum Moisture Content</td>
<td>8.40%</td>
<td>Min 60 %</td>
</tr>
<tr>
<td>Maximum Dry Density (kN/m3)</td>
<td>15.06</td>
<td></td>
</tr>
<tr>
<td>CBR (Soaked)</td>
<td>53.2%</td>
<td></td>
</tr>
</tbody>
</table>

The properties of the tested natural Lateritic gravel soil without any geogrid are presented in Table 1.

MATERIALS AND METHODS

Samples

Natural Lateritic gravel material was taken from a heap at a gravel borrow pit for a construction site near West Midnapore, West Bengal. The material was air dried and tested for consistency limits, particle size distribution and compaction according to the requirements set out in (Ministry of Road Transport and Highway, 2010). Gradation test and consistency limits were done as per BIS(Bureau of Indian Standards) respectively (IS 1498, 1970). Compaction test was carried out in the laboratory to determine the optimum moisture content and the maximum dry density of the soil sample using test method (Sureka Naagesh et al., 2013; Kumar, P. S. and Rajkumar, R., 2012). The CBR was tested according to the test procedure as per BIS (IS 2720-16, 1987; IS 2720-31, 1990).

All test results were compared with the specifications for various roadway pavement layers found in (Ministry of Road Transport and Highway, 2010). The composite material was tested in the laboratory. The experimental setup is schematically shown in Figure 1.

California Bearing Ratio Laboratory Experiment

The pavement layers were simulated by the experimental setup for a CBR test. Three sets of tests: that is soil material with no geogrid, soil material reinforced with Tx160 and soil material reinforced with Tx170 were used for soaked CBR test (IS 1498, 1970; IS 2720-16, 1987). The moulds were soaked in a drum of water with a surcharge placed on them for four days. The reinforced and unreinforced soil samples were tested for CBR under unsoaked and soaked conditions, using the CBR testing machine. The geogrid was placed at the layer 3 level based on result reported by previous research (Naeini, S. A. and Moayed, R., 2009; Sureka Naagesh et al., (2013)). The penetration resistance of the specimens was determined up to penetration of 7mm due to equipment limitations.

RESULTS AND DISCUSSIONS

Characteristics of Natural Gravel Used

The properties of the tested natural Lateritic gravel soil without any geogrid are presented in Table 1.
When the natural gravel sample test results were compared with the Ministry of Road Transport and Highway (MRTH) technical specification for natural gravel pavement, it does not meet sub-base requirement but for base course it satisfies the plastic limit with 25.6% (max 35%) and the plasticity Index with 18.2% (max 30%). The natural gravel sample fails to meet the Liquid Limit requirement for a base course with 37% (max 30%) and the soaked CBR requirement with 53.2% (min 60%). Ordinarily, this material may be considered for stabilization if the CBR could be improved. This is because obtaining suitable natural gravel which fulfills all requirements for road works within economic haulage distance is increasingly becoming difficult.

The Particle size distribution of the natural gravel test sample and the MRTH specification envelopes for Type 1 and Type 2 natural gravels for base course material are shown in Figure 2 and presented in Table 2.

The gradation results of the test sample were compared with the Type 1 and 2 natural gravel requirements for road pavements of the MRTH. The gradation meets all the criteria for Type 2 except that it is deficient in fine particle sizes less than 5mm (2mm, 0.425mm and 0.075mm). The natural gravel sample may be said to marginally satisfy the Type 2 gravel material gradation specifications and therefore, require some improvement to qualify for use on the basis of gradation (Table 2).

From the foregoing we can conclude that the natural gravel sample marginally satisfied Type 2 base course requirement but has inadequate CBR probably due to the deficiency in fine particle sizes. The lack of fines could be the reason for the non-attainment of maximum dry density (15.06kN/m3) and therefore an inadequate CBR (53.2%). Ordinarily such a soil may be improved by stabilization or soil blending techniques. In this research geosynthetic material has been applied for improvement of strength.

GEOSYNTHETIC MATERIALS

Product Specification for the TriAx Tx160 and Tx170 Geogrid

The geogrid is manufactured from a punched polypropylene sheet, which is then oriented in three equilateral directions so that the resulting ribs of the triangular apertures have a high degree of molecular...
Table 3. Properties of Geogrid

<table>
<thead>
<tr>
<th>Particulars</th>
<th>TriAx Tx160</th>
<th>TriAx Tx170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Shape</td>
<td>Triangular</td>
<td>Triangular</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>Rib Shape</td>
<td>Rectangular</td>
<td>Rectangular</td>
</tr>
<tr>
<td>Nodal Thickness (mm)</td>
<td>3.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Aperture Stability (Nmm/deg)</td>
<td>355</td>
<td>610</td>
</tr>
<tr>
<td>Radial Stiffness at Low Strain (kN/m)</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Junction Efficiency</td>
<td>93</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 4. CBR Tests Results (Soaked and Unsoaked)

<table>
<thead>
<tr>
<th>Sample / Placement</th>
<th>Geogrid</th>
<th>Soaked</th>
<th>Unsoaked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry Density</td>
<td>CBR value</td>
</tr>
<tr>
<td>With No Geogrid</td>
<td></td>
<td>24.06</td>
<td>53.2%</td>
</tr>
<tr>
<td>With Tx160</td>
<td></td>
<td>22.39</td>
<td>56.10%</td>
</tr>
<tr>
<td>With Tx170</td>
<td></td>
<td>22.66</td>
<td>65.70%</td>
</tr>
</tbody>
</table>

Figure 3. Comparison between soil-aggregate and soil-Tx160 geogrid-aggregate

orientation, which continues through the mass of the integral node. It was manufactured in accordance with a management system which complies with the requirements of Indian standards. The properties contributing to the performance include the following: Aperture Stability, Radial Stiffness at Low Strain and Junction Efficiency. Table 3 presents the geogrid characteristics for TriAx Tx160 and TriAx Tx170 obtained.

Improvement of CBR Strength

Table 4 shows a summary of the CBR testing result. Dry density and moisture content variations for the soil sample and the soil sample interfaced with the geogrids. Figure 3 represents the variation of the load-penetration curve for the soil sample without reinforcement and the soil sample with TriAx Tx160 geogrid in both soaked and unsoaked conditions. It was observed that, there is an increase in resistance to penetration, when the geogrid is interfaced between the soil samples. For unsoaked conditions, the CBR value at 5.1mm penetration when the TriAx Tx160 geogrid was introduced at layer 3 was 90.5%, compared to a CBR value when there was no geogrid of 71.7%. Considering the soaked condition, the CBR without the geogrid was 53.2%, when the Tx160 geogrid was interfaced the CBR value improved to 56.1% with the geogrid at layer 3.

Figure 4 produces the variation of load-penetration curve for the soil sample without reinforcement and soil sample with TriAx Tx170 geogrid in both soaked and unsoaked conditions.

When the TriAx Tx170 geogrid was interfaced between the soil samples, for unsoaked conditions, the CBR value
Figure 4. Comparison between soil-aggregate and soil-Tx170 geogrid-aggregate

Figure 5. Variation of Reinforcement ratio for soil with TriAx Tx160 and Tx170 Geogrids

at 5.1mm penetration increased from 71.7%. (CBR without geogrid) to 101.3%. After four days soaking of the soil sample, the CBR without the geogrid was 53.2%, when the geogrid was interfaced the CBR improved to 65.7%. In both cases, the CBR of the soil improved remarkably with the geogrid, however, the TriAx Tx170 geogrid increased the strength more than the TriAx Tx160. Earlier studies by (Sureka Naagesh et al., 2013; Kumar, P. S. and Rajkumar, R., 2012) on the effect of geotextile on CBR strength reported similar results in which interfacing of a geotextile in an unpaved road, increases the penetration resistance and hence the CBR strength. (Naeini, S. A., and Moayed, R., 2009) also showed that placing a geogrid on the third layer of a clay soil caused an increase in CBR by 25.6% under soaked conditions. The variation of the reinforcement ratio for both Tx160 geogrid and Tx170 geogrid in both soaked and unsoaked conditions are shown in the plot of reinforcement ratio against penetration curve in Figure 5.

Figure 5 indicates that, the reinforcement ratio is more than one throughout the test, which indicates that the introduction of the geogrid offers a good resistance even at lower penetration. It also shows that TriAx Tx170 geogrid in both soaked and unsoaked conditions offers better resistance even to lower penetration (1-3mm) than the Tx160 in the soaked and unsoaked conditions. (Kumar, P. S. and Rajkumar, R., 2012) showed a similar reinforcement ratio, which was more than one throughout their test, indicating that the geotextile offers good resistance.

From the results we observed that, the increasing the strength of the geogrid from Aperture Stability 355 Nmm/deg to 610 Nmm/deg, and from Radial Stiffness at Low Strain from 300 kN/m to 500 kN/m increases the penetration resistance of the composite soil-reinforcement sample. For soaked specimens, the reinforcement ratios were slightly more than one.

CONCLUSION

In this study two types of triaxial geogrids namely Tx170 and Tx160 were used to interface a lateritic gravel sample at layer 3. The sample was tested without geogrid in soaked and unsoaked conditions. Then by placing the geogrid at the third layer, CBR tests were performed on the soil sample. The test results from the research showed that using a single layer of any of the geogrids at the top of layer 3 in the soil samples caused a
considerable increase in the penetration resistance hence an improvement in the CBR value. From the research, it was also observed that Tx170 offered a better resistance than the Tx160 geogrid. From the above analysis, it is of economic benefit to use geogrids in road construction as it reduces the act of filling with materials from borrow pits to improve strength of weak soils.

Recommendations

It can be inferred from the research results that, interfacing with geogrids into soils will help improve the CBR of a subbase material to perform as a base coarse material. For dry weather conditions, the use of geogrid should be strongly advised since it shows considerable CBR improvement. For situations where the pavement is likely to be in constant soaked conditions, the use of the TriAx Tx170 should be considered because it improves the CBR signifi-cantly unlike the TriAx Tx160. The results indicate that it might be economical to introduce the usage of geogrids in road construction.

ACKNOWLEDGEMENT

The authors hereby acknowledge the support offered by MRTH, West Bengal and Smt. S. R. Patel Engg. College, Unjha, Gujarat through the provision of samples for the laboratory tests.

REFERENCES

